QHW Designation: C 1259 — 01

Standard Test Method for

Dynamic Young’'s Modulus, Shear Modulus, and Poisson’s
Ratio for Advanced Ceramics by Impulse Excitation of
Vibration *

This standard is issued under the fixed designation C 1259; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilone} indicates an editorial change since the last revision or reapproval.

1. Scope celain Enamel and Glaze Frits and Fired Ceramic Whitew-

1.1 This test method covers determination of the dynamic _are Products by the Dilatometer Mettfod
elastic properties of advanced ceramics at ambient tempera- C 623 Test M‘?thOd for Young’s Modulus, Shear Modulus,
tures. Specimens of these materials possess specific mechani- and Poisson’s Ratio for Glass and Glass-Ceramics by

cal resonant frequencies that are determined by the elastic Resonance _ o

dynamic elastic properties of a material can therefore be tal Frequencies of Carbon and Graphite Materials by Sonic
computed if the geometry, mass, and mechanical resonant Resonancé
frequencies of a suitable (rectangular or cylindrical geometry) C 848 Test Method for Young’s Modulus, Shear Modulus,
test specimen of that material can be measured. Dynamic and Poisson’s Ratio for Ceramic Whitewares by Reso-
Young’'s modulus is determined using the resonant frequency nancé _
in the flexural mode of vibration. The dynamic shear modulus, C 1145 Terminology of Advanced Ceramfics
or modulus of rigidity, is found using torsional resonant C 1161 Test Method for Flexural Strength of Advanced
vibrations. Dynamic Young's modulus and dynamic shear _Ceramics at Ambient Temperattire
modulus are used to compute Poisson’s ratio. C 1198 Test Method for Dynamic Young's Modulus, Shear
1.2 Although not specifically described herein, this test ~Modulus, and Poisson’s Ratio for Advanced Ceramics by
method can also be performed at cryogenic and high tempera- _SOnic Resonanée _ _ _
tures with suitable equipment modifications and appropriate D 4092 Terminology Relating to Dynamic Mechanical
modifications to the calculations to compensate for thermal _Measurements on P'?Sﬁ'CS .
expansion. E.6 Terminology Relating to Methods of Mechanical Test-
1.3 Where possible, the procedures, sample specifications, ing® ] . o
and calculations in this test method are consistent with Test E 177 Practice for Use of the Terms Precision and Bias in
Methods C 623, C 747, C 848, and C 1198. ASTM Test Method3 _
1.4 This test method uses test specimens in bar, rod, and E 691 Practice for Cpnductlng an Interlaboratory Study to
disc geometries. The rod and bar geometries are described in Detéermine the Precision of a Test Metfod
the main body. The disc geometry is addressed in Annex A13

1.5 The values stated in Sl units are to be regarded as the Termln.ol_o.gy . .
standard. 3.1 Definitions—The definitions of terms relating to me-

1.6 This standard does not purport to address all of thechanical testing appearing in Terminology E 6 should be
safety concemns, if any, associated with its use. It is th&onsidered as applying to the terms used in this test method.
responsibility of the user of this standard to establish appro-The definitions of terms relating to advanced ceramics appear-

priate safety and health practices and determine the applical"d in Terminology C 1145 should be considered as applying to
bility of regulatory limitations prior to use. the terms used in this test method. Directly pertinent definitions

as listed in Terminologies E 6, C 1145, and D 4092 are shown
2. Referenced Documents in the following paragraphs with the appropriate source given

2.1 ASTM Standards: in brackets.

C 372 Test Method for Linear Thermal Expansion of Por- 3.1.1 advanced ceramicn—a highly engineered, high-
performance, predominately nonmetallic, inorganic, ceramic

1 This test method is under the jurisdiction of ASTM Committee C28 on 2 Annual Book of ASTM Standardél 15.02.
Advanced Ceramics and is the direct responsibility of Subcommittee C28.01 on *Annual Book of ASTM Standardgl 15.01.

Properties and Performance. 4 Annual Book of ASTM Standardégl 08.02.
Current edition approved April 10, 2001. Published June 2001. Originally *Annual Book of ASTM Standardgl 03.01.
published as C 1259-94. Last previous edition C 1259-98. ¢ Annual Book of ASTM Standardgyl 14.02.

Copyright © ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.
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material having specific functional attributes. (C 1145) in the material. Advanced ceramics are considered isotropic on
3.1.2 dynamic mechanical measurememt—a technique in a macroscopic scale, if they are homogeneous and there is a

which either the modulus or damping, or both, of a substanceandom distribution and orientation of phases, crystallites,

under oscillatory load or displacement is measured as aomponents, pores, or microcracks.

function of temperature, frequency, or time, or combination 3.2.7 nodesn—a slender rod or bar in resonance containing

thereof. (D 4092) one or more locations having a constant zero displacement. For
3.1.3 elastic limit [FL™], n—the greatest stress that a the fundamental flexural resonance of such a rod or bar, the

material is capable of sustaining without permanent straimodes are located at 0.224from each end, wheré is the

remaining upon complete release of the stress. (E6) length of the specimen.
3.1.4 elastic modulugFL 2], n—the ratio of stress to strain  3.2.8 out-of-plane flexuren—for rectangular parallelepiped
below the proportional limit. (E6) geometries, a flexure mode in which the direction of displace-

3.1.5 Poisson’s ratio(l) [nd], n—the absolute value of the ment is perpendicular to the major plane of the test specimen.
ratio of transverse strain to the corresponding axial strain 3.2.9 resonant frequengyn—naturally occurring frequen-
resulting from uniformly distributed axial stress below the cies of a body driven into flexural, torsional, or longitudinal
proportional limit of the material. vibration that are determined by the elastic modulus, mass, and

3.1.5.1 Discussior—In isotropic materials, Young’s Modu- dimensions of the body. The lowest resonant frequency in a
lus (E), shear modulus@), and Poisson’s ratio (u) are related given vibrational mode is the fundamental resonant frequency

by the following equation: of that mode.
U= (E20-1 (1) 3.2.10 slender rod or bay n—in dynamic elastic property

testing, a specimen whose ratio of length to minimum cross-
(E 6) sectional dimension is at least 5 and preferably in the range of
. - _ 20 to 25.

3.1.6 proportional limit [FL™?), n—the greatest stress that a ™5 5 11 torsjonal vibrations n—the vibrations that occur
material is capable of sustaining without deviation from,,nen the oscillations in each cross-sectional plane of a slender

proportionality of stress to striain (Hooke’s Iav_v). (E 6). rod or bar are such that the plane twists around the length
3.1.7 shear modulus (GJFL?, n—the elastic modulus in dimension axis.

shear or torsion. Also called modulus of rigidity or torsional

modulus. _ (E6) 4. Summary of Test Method
ter?éildi z?%g%%:ggggﬁs (L™, n—the elastic modtjllzug)ln 4.1 This test method measures the fundamental resonant
o ) . . \ frequency of test specimens of suitable geometry by exciting
3.2 Definitions of Terms Specific to This Standard: them mechanically by a singular elastic strike with an impulse

3.2.1 antinodes n—two or more locations that have local (5| A transducer (for example, contact accelerometer or
maximum displacements, called anti-nodes, in an uNcoMzgn_contacting microphone) senses the resulting mechanical
strained slender rod or bar in resonance. For the fundamentgl ations of the specimen and transforms them into electric
flexure resonance, the ant!—nodes are located at the two engfgnals. Specimen supports, impulse locations, and signal
and the center of the specimen. , pick-up points are selected to induce and measure specific

3.2.2 elastiq adj—the property of a material such that an modes of the transient vibrations. The signals are analyzed, and
application of stress within the elastic limit of that material ihe fundamental resonant frequency is isolated and measured
making up the body being stressed will cause an instantaneoys, ihe signal analyzer, which provides a numerical reading that
and uniform deformation, which will be eliminated upon s (or is proportional to) either the frequency or the period of
removal of the stress, with the body returning instantly to itShe specimen vibration. The appropriate fundamental resonant
original size and shape without energy loss. Most advanceglaquencies, dimensions, and mass of the specimen are used to

ceramics conform to this definition well enough to make thisgg|cylate dynamic Young’s modulus, dynamic shear modulus
resonance test valid. and Poisson’s ratio.

3.2.3 flexural vibrations n—the vibrations that occur when
the displacements in a slender rod or bar are in a plane normél Significance and Use

to the length dimension. o _ 5.1 This test method may be used for material development,
3.2.4 homogeneoysadj—the condition of a specimen such characterization, design data generation, and quality control

that the composition and density are uniform, so that anyyyrposes.

smaller specimen taken from the original is representative of 52 This test method is specifically appropriate for deter-

the whole. Practically, as long as the geometrical dimensions ghining the modulus of advanced ceramics that are elastic,

the test specimen are large with respect to the size of 'nd'V'dUéﬂomogeneous and isotro(it).”

grains, crystals, components, pores, or microcracks, the body 5 3 Thjs test method addresses the room temperature deter-

can be considered homogeneous. mination of dynamic moduli of elasticity of slender bars

3.2.5in-plane flexure n—for rectangular parallelepiped (rectangular cross-section) and rods (cylindrical). Flat plates
geometries, a flexure mode in which the direction of displace-

ment is in the major plane of the test specimen.

3.2.6 isotropic, adj_.the Cond_ition of a specimgn Suclh th‘_"‘t ” The boldface numbers in parentheses refer to the list of references at the end of
the values of the elastic properties are the same in all directionsis test method.
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and disks may also be measured similarly, but the required 6.1.4 The test method is not satisfactory for specimens that
equations for determining the moduli are not addressed hereihave major discontinuities, such as large cracks (internal or

5.4 This dynamic test method has several advantages amstirface) or voids.
differences from static loading techniques and from resonant 6.2 This test method for determining moduli is limited to
techniques requiring continuous excitation. specimens with regular geometries (rectangular parallelepiped,

5.4.1 The test method is nondestructive in nature and can beylinders, and discs) for which analytical equations are avail-
used for specimens prepared for other tests. The specimens aigle to relate geometry, mass, and modulus to the resonant
subjected to minute strains; hence, the moduli are measured ébration frequencies. The test method is not appropriate for
or near the origin of the stress-strain curve, with the minimunmdetermining the elastic properties of materials that cannot be
possibility of fracture. fabricated into such geometries.

5.4.2 The impulse excitation test uses an impact tool and 6.2.1 The analytical equations assume parallel and concen-
simple supports for the test specimen. There is no requiremetric dimensions for the regular geometries of the specimen.
for complex support systems that require elaborate setup d@eviations from the specified tolerances for the dimensions of
alignment. the specimens will change the resonant frequencies and intro-

5.5 This technique can be used to measure resonant frequeshice error into the calculations.
cies alone for the purposes of quality control and acceptance of 6.2.2 Edge treatments such as chamfers or radii are not
test specimens of both regular and complex shapes. A range obnsidered in the analytical equations. Edge chamfers on
acceptable resonant frequencies is determined for a speciméaxure bars prepared according to Test Method C 1161 will
with a particular geometry and mass. The technique is particichange the resonant frequency of the test bars and introduce
larly suitable for testing specimens with complex geometrieerror into the calculations of the dynamic modulus. It is
(other than parallelepipeds, cylinders/rods, or discs) that wouldkecommended that specimens for this test method not have
not be suitable for testing by other procedures. Any specimenhamfered or rounded edges. Alternately, if narrow rectangular
with a frequency response falling outside the prescribedpecimens with chamfers or edge radii are tested, then the
frequency range is rejected. The actual modulus of eachrocedures in Annex A2 should be used to correct the calcu-
specimen need not be determined as long as the limits of tHated Young’s modulus, E.
selected frequency range are known to include the resonant6.2.3 For specimens with as-fabricated and rough or uneven
frequency that the specimen must possess if its geometry armirfaces, variations in dimensions can have a significant effect
mass are within specified tolerances. in the calculations. For example, in the calculation of dynamic

5.6 If a thermal treatment or an environmental exposurenodulus, the modulus value is inversely proportional to the
affects the elastic response of the test specimen, this testibe of the thickness. Uniform specimen dimensions and
method may be suitable for the determination of specific effectprecise measurements are essential for accurate results.
of thermal history, environment exposure, etc. Specimen de- 6.3 The test method assumes that the specimen is vibrating
scriptions should include any specific thermal treatments ofreely, with no significant restraint or impediment. Specimen
environmental exposures that the specimens have received.supports should be designed and located properly in accor-
dance with 9.3.1, 9.4.1, and 9.5.1 so the specimen can vibrate
6. Interferences freely in the desired mode. In using direct contact transducers,

6.1 The relationships between resonant frequency and dyhe transducer should be positioned away from anti-nodes and
namic modulus presented herein are specifically applicable t@ith minimal force to avoid interference with free vibration.
homogeneous, elastic, isotropic materials. With noncontacting transducers, the maximum sensitivity is

6.1.1 This method of determining the moduli is app|icab|eaccomp|ished by placing the transducer at an antinode.
to composite ceramics and inhomogeneous materials only with 6.4 Proper location of the impulse point and transducer is
careful consideration of the effect of inhomogeneities andmportant in introducing and measuring the desired vibration
anisotropy. The character (volume fraction, size, morphologymode. The locations of the impulse point and transducer should
distribution, orientation, elastic properties, and interfacialnot be changed in multiple readings; changes in position may
bonding) of the reinforcement and inhomogeneities in thejevelop and detect alternate vibration modes. In the same
specimens will have a direct effect on the elastic properties ofnanner, the force used in impacting should be consistent in
the specimen as a whole. These effects must be considered fultiple readings.
interpreting the test results for composites and inhomogeneousg.5 If the frequency readings are not repeatable for a
materials. specific set of impulse and transducer locations on a specimen,

6.1.2 The procedure involves measuring transient elastit may be because several different modes of vibration are
vibrations. Materials with very high damping capacity may bepeing developed and detected in the test. The geometry of the
difficult to measure with this technique if the vibration dampstest bar and desired vibration mode should be evaluated and
out before the frequency counter can measure the signalsed to identify the nodes and antinodes of the desired
(commonly within three to five cycles). vibrations. More consistent measurements may be obtained if

6.1.3 If specific surface treatments (coatings, machiningihe impulse point and transducer locations are shifted to induce
grinding, etching, etc.) change the elastic properties of thend measure the single desired mode of vibration.
near-surface material, there will be accentuated effects on the
properties measured by this flexural method, as compared to Apparatus
static/bulk measurements by tensile or compression testing. 7.1 Apparatus suitable for accurately detecting, analyzing,
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and measuring the fundamental resonant frequency or period of
a vibrating free-free beam is used. The test apparatus is shown
in Fig. 1. It consists of an impulser, a suitable pickup FLEXIBLE POLYMER ROD
transducer to convert the mechanical vibration into an electri-
cal signal, an electronic system (consisting of a signal

conditioner/amplifier, a signal analyzer, and a frequency read-
out device), and a support system. Commercial instrumentation
is available that measures the frequency or period of the
vibrating specimen. See Note 1.

Note 1—One such instrument is the Grindosonic instrument, manufac-
tured by J. W. Lemmens, Inc., 10801 Pear Tree Lane, St. Louis, MO
63074.

7.2 Impulser—The exciting impulse is imparted by lightly
striking the specimen with a suitable implement. This imple-
ment should have most of its mass concentrated at the point of
impact and have mass suficient to induce a measurablgignal to the signal analyzer. The signal analysis system

mechampal V|brat|oln, but not so Igrge asto displace or dama onsists of a frequency counting device and a readout device.
the specimen physically. In practice, the size and geometry o

the imoulser depends on the size and weidht of the specime ppropriate devices are frequency counter systems with stor-
and thpe force r?eeded to produce vibratign For corﬂmonl Qge capability or digital storage oscilloscopes with a frequency
tested geometries (small bpars rods. and diécs) in advanc)é unter module. With the digital storage oscilloscope, a Fast
ceramicgs an example of such, an in,wpulser would be a sted urier Transform signal analysis system may be useful for
sphere 0.5 cm in diameter glued to the end of a flexible 10—c nalyzing more complex waveforms and identifying the fun-

; . amental resonant frequency.
long polymer rod. (See Fig. 2.) An alternate impulser would be 7.5 Support SystemThe support shall serve to isolate the
a solid metal, ceramic, or polymer sphere (0.1 to 1.0 cm inS '

diameter) dropped on the specimen through a guide tube tgoecimen from extraneous vibration without restricting the
PP SP 9 9 esired mode of specimen vibration. Appropriate materials
ensure proper impulse position.

7.3 Signal Pickup—Signal detection can be via transducersShOU|d be stable at the test temperatures. Support materials can

in direct contact with the specimen or by non-contact trans-be either soft or rigid for ambient conditions. Examples of soft
P y materials would be a compliant elastomeric material, such as
ducers. Contact transducers are commonly acceleromet

. : . . N %Iyurethane foam strips. Such foam strips would have simple
using piezoelectric or strain gage methods to measure t

N .Ifat surfaces for the specimen to rest on. Rigid materials, such
vibration. Non-contact transducers are commonly acoustiGgota) or ceramic, should have sharp knife edges or cylin-
[:nalcgjc?tg?]rclzis}n:tl;todtzgt)é r?:gsuis?h;%/?brgt?c?r:, %ngr:gt'ﬁ’enoﬁrical surfaces on which the specimen should rest. The rigid

P ' d pports should be resting on isolation pads to prevent ambient

range of the transducer shall be sufficient to measure th\?ibrations from being picked up by the transducer. Wire

expected frequencies of the specimens of interest. A suitabl : .

.suspension can also be used. Specimens shall be supported
range Wo_uld be 100 Hz to 50 kHZ for mqst adva}nced Ceram'%long node lines appropriate for the desired vibration in the
test specimens. (Smaller and stiffer specimens vibrate at h'ghﬁgcations described in Section 8

frequencies.) The frequency response of the transducer across

the frequency range of interest shall have a bandwidth of a8. Test Specimen

least 10% of the maximum measured frequency before -3 dB g 1 The specimens shall be prepared so that they are either

power loss oceurs. . . rectangular or circular in cross section. Either geometry can be
7.4 Electronic System-The electronic system consists of @ ,5e 1o measure both dynamic Young's modulus and dynamic

signal cond[tloner/amphfler, signal analyzer, and a frequer)C')éhear modulus. Although the equations for computing shear

readout device. The system should have accuracy and precisigt, s with a cylindrical specimen are both simpler and more

sufﬁmgnt to measure the frequencies of interest to an accuracy. . rate than those used with a rectangular bar, experimental
of 0.1%. The signal conditioner/amplifier should be suitable togifﬁculties in obtaining torsional resonant frequencies for a

power the transducer and provide and appropriate amplifieglyinqrical specimen usually preclude its use for determining
shear modulus.

STEEL BALL

FIG. 2 Diagram of Typical Impulser for Small Specimens

8.2 Resonant frequencies for a given specimen are functions

5632 Hz | ivacivoit TRANSDUCER IMPULSER of the specimen dimensions as well as its mass and moduli;

Cc— dimensions should therefore be selected with this relationship

READ-OUT] in mind. The selection of size shall be made so that, for an

DEVICE FREQUENCY r TESTSPECTER estimated modulus, the resonant frequencies measured will fall

/\ suprorTsvaTEM /N within the range of frequency response of the transducers and

electronics used. For a slender rod, the ratio of length to

ELECTRICAL SYSTEM minimum cross-sectional dimension shall have a value of at
FIG. 1 Block Diagram of Typical Test Apparatus least 10. However, a ratio of approximately 20 25 is
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preferred for ease in calculation. For shear modulus measur&- Procedure
ments of rectangular bars, a ratio of width to thickness of 5 or 9.1 Activate all electrical equipment, and allow it to stabi-
greater is recommended for minimizing experimental dlfﬁcul-“Ze according to the manufacturer's recommendations.
ties. . 9.2 Use a test specimen established as a verification/
8.3 All surfaces on the rectangular specimen shall be flatc libration standard to verify the equi

. X quipment response and
Opposite surfaces across the length and width shall be parallef‘l
within 0.01 mm or +0.1%, whichever is greater. Opposite o co ocY-

' ISR greater. Jpp 9.3 Fundamental Flexural Resonant Frequency (Out-of-

surfaces across the thickness shall be parallel within 0.002 mm quency

or +0.1%, whichever is greater. The cylindrical specimen shalf’'ane Flexure)

be round and constant in diameter within 0.002 mn-6r1%, 9.3.1 Place the specimen on the supports located at the

whichever is greater. fundamental nodal points (0.224 L from each end; see Fig. 3).
8.4 Specimen mass shall be determined within 0.1% or 10 9.3.2 Determine the direction of maximum sensitivity for

mg, whichever is greater. the transducer. Orient the transducer so that it will detect the

8.5 Specimen length shall be measured to within 0.1%desired vibration.
Specimen thickness and width shall be measured within 0.1% 9.3.2.1 Direct Contact TransducersPlace the transducer
or 0.01 mm at three locations and an average determined. in contact with the test specimen to pick up the desired
8.6 Porous materials and those susceptible to hydratiowibration. If the transducer is placed at an antinode (location of
should be dried in air at 120°C in a drying oven until the massmaximum displacement), it may mass load the specimen and
is constant (less than 0.1% or 10 mg difference in measureghodify the natural vibration. The transducer should preferably
mass with 30 min of additional drying). be placed only as far from the nodal points as necessary to

FLEXURE

OUT-OF-PLANE
FLEXURE

FLEXURE
NODE LINE

X1 = OUT-OF-PLANE IMPULSE POINT
P1 = OUT-OF-PLANE CONTACT SENSOR POINTS
M1 = OUT-OF-PLANE MICROPHONE SENSOR POINT

FLEXURE
NODE LINE

IN-PLANE
FLEXURE

FLEXURE
NODE LINE

X2 = IN-PLANE IMPULSE POINT
P2 = IN.PLANE CONTACT SENSOR POINTS

FIG. 3 Rectangular Specimens Tested for In-Plane and Out-of-Plane Flexure
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obtain a reading (see Fig. 3). This location will minimize thewidth (the torsional nodal planes) (see Fig. 4).
damping effect from the contacting transducer. The transducer 9.5.2 |ocate the transducer at one quadrant of the specimen,
contact force should be consistent, with good response angteferably at approximately 0.224 L from one end and toward

minimal interference with the free vibration of the specimen. ihe edge. This location is a nodal point of flexural vibration and
9.3.2.2Non-Contact TransducersPlace the non-contact il minimize the possibility of detecting a spurious flexural

transducer over an antinode point and close enough to the tg§{yqe (see Fig. 4).
specimen to pick up the desired vibration, but not so close as

to interfere with the free vibration (see Fig. 3). 9.5.3 Strike the specimen on the quadrant diagonally oppo-

9.3.3 Strike the specimen lightly and elastically, either at the'te the trgn_sducer, again at 0.224 L frqm th_e en(_j ant_j near the
center of the specimen or at the opposite end of the speciméﬂjge} ,S_t”k'ng gt_ a flexural nodal pomj[ W'I,I minimize the
from the detecting transducer (see Fig. 3). possibility of exciting a flexural mode of vibration (see Fig. 4).

9.3.4 Record the resultant reading, and repeat the test until 9.5.4 Record the resultant reading, and repeat the test until
a recommended ten readings are obtained that lie witlid  a recommended ten readings are obtained that lie wittfio
% of the mean. The round-robin interlaboratory study (12.2f% of the mean. The round-robin interlaboratory study (12.2)
showed that data points significantly (>10 %) out of range wereshowed that data points significantly (>10%) out of range were
measurements of spurious vibration modes or secondary hameasurements of spurious vibration modes or secondary har-
monics. If ten readings cannot be taken, a minimum of fivemonics. If ten readings cannot be taken, a minimum of five
readings that lie withint 10 % of the mean shall be required readings that lie within=10 % of the mean shall be required
for estimating the mean. Use the mean of these readings for estimating the mean. Use the mean of these readings to
determine the fundamental resonant frequency in flexure.  determine the fundamental resonant frequency in torsion.

9.4 Fundamental Flexural Resonant Frequency (In-Plane
Flexure) 10. Calculation

9.4.1 This procedure is the same as that above (9.3), except )
that the direction of vibration is in the major plane of the 10-1 Dynamic Young's Modulug2, 3)
specimen. This measurement can be performed in two ways. In 10.1.1 For the fundamental flexure frequency of a rectan-
one case, move the transducer and impulser 90° around tiggilar bar(2),
long axis of the test specimen to introduce and detect vibrations
in the major plane (see Fig. 3). In the alternate method, rotate
the test bar 90° around its long axis and reposition it on thewhere:
specimen supports. Transpose the width and thickness dimerE
sions in the calculations. For homogeneous, isotropic materim
als, the calculated moduli should be the same as the modulp
calculated from the out-of-plane frequency. The comparison ofk
in-plane and out-of-plane frequency measurements can thus ble
used as a cross check of experimental methods and calcula(t
tions.

9.5 Fundamental Torsional Resonant Frequency T

9.5.1 Support the specimen at the midpoint of its length and

E = 0.9465mf2/ b)(L3/ €) T, %)

Young’s modulus, Pa,

mass of the bar, g (see Note 2),

width of the bar, mm (see Note 2),

length of the bar, mm (see Note 2),

thickness of the bar, mm (see Note 2),

fundamental resonant frequency of bar in flexure, Hz,
and

correction factor for fundamental flexural mode to
account for finite thickness of bar, Poisson’s ratio, etc.

TORSION
NODE LINE

FLEXURE
NODE LINE

>

TORSION

X3 = TORSION IMPULSE POINT
P3 = TORSION CONTACT SENSOR POINTS
M3 = TORSION MICROPHONE SENSOR POINT

FIG. 4 Rectangular Specimen Tested for Torsional Vibration
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T, =1+ 6.585(1 + 0.0752 p-+ 0.8109 {3) (t/ L)>— 0.868(t / L)* (3) Substitute the dynamic shear modulus and Young's
8.340(1+ 0.2023 p+ 2.173 H)(t/ L)* modulus values calculated in sted3 énd @) into Eq 12 for
| 1.000+ 6.338(1 + 0.1408 pt 1.536 () (t/ L) 3) Poisson’s ratio satisfying isotropic conditions. Calculate a new

value for Poisson'’s ratio for another iteration beginning at Step
| = Poissons ratio 2. ) L .
(4) Repeat Steps2] and @) until no significant difference
. (2% or less) is observed between the last iterative value and
Note 2—In the modulus equations, the mass and length terms are give, e final computed value of the Poisson’s ratio

in units of grams and millimetres. However, the defined equations can als P ) . ) .
be used with mass and length terms in units of kilograms and metres with (5) Self-consistent values for the moduli are thus obtained.
no changes in terms or exponents. 10.1.1.4 If the rectangular specimen is narrow and the four

10.1.1.1 IfL/t = 20, T, can be simplified to the following: 109 edges of the rectangular bar have been chamfered or
rounded, then the calculated Young’'s modulus, E, should be

T, = [1.000+ 6.585(t/ L)’] (4)  corrected in accordance with Annex A2.
10.1.2 For the fundamental flexural frequency of a rod of
andE can be calculated directly. circular cross sectio(2):
10.1.1.2 IfL / t < 20 and Poisson’s ratio is known, thdi 3 e
can be calculated directly from Eq 3 and then used to calculate E = 1.6067(L"/D)(miOT, ©)
E. where:
10.1.1.3 IfL / t < 20 and Poisson’s ratio is not known, then p = diameter of rod, mm (see Note 2), and
an initial Poisson’s ratio must be assumed to begin theT,’ = correction factor for fundamental flexural mode to
computations. An iterative process is then used to determine a account for finite diameter of bar, Poisson’s ratio, etc.

value of Poisson’s ratio, based on experimental Young's
modulus and shear modulus. The iterative process is flow-
ggle:)r\tid in Fig. 5 and described in paragrapbstiirough ) _[ 4.681(1 + 0.2023 1+ 2,173 ) (DI)® } o

(1) Determine the fundamental flexural and torsional reso- 1.000+ 4.754(1 + 0.1408 p+ 1.536 |)( D/L)®
nant frequency of the rectangular test specimen, as described in10.1.2.1 IfL / D = 20, thenT,’ can be simplified to the
Section 9. Using Eq 8 and Eq 9, calculate the dynamic shedbllowing:
modulus of the test specimen for the fundamental torsional , »
resonant frequency. Ti" = [1.000+ 4.939(DIL)’] ()

(2) Using Eq 2 and Eq 3, calculate the dynamic Young's 10.1.2.2 IfL/D < 20 and Poisson’s ratio is known, th&g
modulus of the rectangular test specimen from the fundamentailn be calculated directly from Eq 6 and then used to calculate
flexural resonant frequency, dimensions and mass of the.
specimen, and initial/iterative Poisson’s ratio. Care shall be 10.1.2.3 IfL/D < 20 and Poisson’a ratio is not known, then
exercised in using consistent units for all of the parameteran initial Poisson’s ratio must be assumed to start the compu-
throughout the computations. tations. Final values for Poisson’s ratio, dynamic Young's

T, =1+ 4.939(1 + 0.0752 u+ 0.8109 ) (D/L)?
—0.4883(D/L)*

FREQUENCY
MEASUREMENT

'f"t

CALCULATE
SHEAR MODULUS
G

DIMENSIONS &
MASS

*Px

CALCULATE CALCULATE
YOUNG'S POISSON'S
mobuLus [P RATIO
X

INITIAL POISSON'S
RATIO yp ___SToP
FINAL VALUES FOR
MERG

FIG. 5 Process Flowchart for Iterative Determination of Poisson’s Ratio
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modulus, and dynamic shear modulus are determined, using. = average linear thermal expansion (mm/mm - °C)
the same method shown in Fig. 5 and described in paragraphs from room temperature to test temperature (Test
(2) through §) in 10.1.1.3, but using the modulus equations for Method C 372 is recommended), and
circular bars (Eq 5, Eq 6, and Eq 11). AT = temperature differential in °C between test tempera-

10.2 Dynamic Shear Modulug?): ture T and room temperature.

10.2.1 For the fundamental torsional frequency of a rectan- 10.5 Use the following stress conversion factor for English
gular bar(4): units.

4Lmf? 1Pa= 1.450 X 107*psi (14)
G=—pr[BIL+A)] ©)

where:

G = dynamic shear modulus, Pa,

f, = fundamental resonant frequency of bar in torsion, Hz.  2:©
/‘/’-—/
B b/t+t/b * 1.5 =
B= [4(t/b)— 252(t/ by + 0.21(t/b)6] © < //
£ p
5 10 SHEAR MQDULUS$
and = / connscnPN TERM A
A = an empirical correction factor dependent on the width- § ¢.s / 6= Smsosurgd
—to—thickness ratio of the test speciméb). This ?) / I+4
correction factor has an effect of lessth&% and can ~ § p.
be omitted, unless accuracies of bettemtt2a% are § ° v
desired. (See Fig. 6 for a plot éfas a function of the
width—to—thickness ratio.) -0.5l s 3 4 5 & 7 &8 s 10
Width to Thickness Ratio, (b/t)
An empirical equation fitted to the points from Fig. 6 is FIG. 6 Plot of the Shear Modulus Correction Term A
given in Eq 10.
[0.5062 — 0.8776b/ t) + 0.3504(b/ t)*— 0.0078(b / t)°]
A= [12.03(b/t) + 9.892(b/ t)?] 11. Report
(10) 11.1 Report the following information:

11.1.1 Identification of specific tests performed, a detailed
10.2.2 For the fundamental torsion frequency of a cylindri-description of apparatus used (impulser, transducer, electrical

cal rod(3): system, and support system), and an explanation of any
) 5 deviations from the described test method.

G = 16 mi*(L/D") (11) 11.1.2 Complete description of material(s) tested stating

10.3 Poisson’s Ratio: composition, number of specimens, specimen geometry and

mass, specimen history, and any treatments to which the

h=(E26)-1 (12) specimens have been subjected. Include comments on dimen-
where: sional variability, surface finish, edge conditions, observed
p = Poisson’s ratio, changes after cryogenic or high-temperature testing, etc.,
E = Young’'s modulus, and where pertinent.
G = shear modulus. 11.1.3 Specimen temperature at measurement, number of

10.4 If measurements are made at elevated or cryogenimeasurements taken, numerical values obtained for measured
temperatures, the calculated moduli must be corrected fdundamental resonant frequencies, and the calculated values
thermal expansion effects using Eq 13. for dynamic Young’s modulus, dynamic shear modulus, Pois-

_ 2 N son’s ratio for each specimen tested. '
Mr = Mo [f/fo]" [1A1 + aAT)] (13) 11.1.4 Date of test and name of the person performing the
test.
. 11.1.5 Laboratory notebook number and page on which test
M+ = modulus at temperatuiie(either Young's modulug data are recorded or the computer data file name, or both, if

or shear modulus), used.
My = modulus at room temperature (either Young’s modu-
lus E or shear modulus), 12. Precision and Bias
fr = resonant frequency in furnace or cryogenic chamber 15 1 an evaluation(6) was conducted and published in
at temperaturd, . 1990, by Smith, Wyrick, and Poole, of three different methods
fo = resonantirequency at room temperature in fumace OTsf modulus measurement of mechanically alloyed materials.

cryogenic chamber, As part of that evaluation, the impulse modulus measurement
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method® using a commercial instrument, was used. With thatcients of variation for individual laboratories ranged from
instrument, the precision of the impulse method was measure@l001 to 0.6 % among the ten test sets. For the silicon nitride
using a NIST Standard Reference Material 718 (aluminaar, the range of coefficients of variation was 0.001 to 1.0 % for
reference bar No. C1) in flexural vibration. The NIST standardhe individual laboratories.

had a measured and specified fundamental flexural frequency 15 5 5 Based on this intralaboratory study of the impulse

of 2043.3 Hz. The fundamental flexural resonant frequency Ofgy method, the repeatability and reproducibility coefficients at
the NIST reference bar was measured by the impulse methot(ﬁe 95 % confidence level are listed in Table 1

and reported by Smith, Wyrick, and Poole as 2044.6 Hz. This . ) ,
was a percentage error of +0.06 %, indicating the level of bias 12-3 A propagation of errors analysis of the equations=for
that is achievable with the impulse method. and G using the stated tolerances for dimensions, mass, and
12.2 An intralaboratory round-robin test was conducted infféquency measurements in this test method has shown that a
1993 to measure the precision of frequency measurement ¢hl % error in the measurement of the key variables produces
two monolithic ceramic test bars. A bias test was not conducte@ range of errors in the calculation of the modulus based on the
because suitable standard reference bars were not readiiiriable exponent in the equations. Table 2 gives the calcula-
available. tion error effects of errors in the different experimental vari-
12.2.1 The tests were conducted with an alumina test baables.

(10 g, 83.0 by 6.9 by 4.8 mm) and a silicon nitride bar (2.0 g, 12.4 It is expected that the major sources of experimental
50 by 4.0 by 3.0 mm). The silicon nitride bar was machined toyariation in modulus values for this test method will be in two
Test Method C 1161 tolerances; the alumina bar was nQheasurements—the fundamental frequency and the smallest
machined and varied from 4.5 to 4.8 mm in thickness along it§jimension (thickness/diameter) of the test bars. If a fundamen-
length. The variations in the alumina bar thickness wergy) regonant frequency of 6000 Hz is measurable to an accuracy

deliberate; it provided a test of the robustness of the frequency; 1 g Hz/(0.3 %) and a 3-mm thick bar is parallel and measured

miz;s;rgrpre?titencr:n;?ue. nev m rements were not ;co an accuracy of 0.01 mm (0.3 %), the error in the thickness
<. lorsional frequency measurements were not pele, . ement will have the greater effect on the modulus

L%rig%?et;(e)??gfsei otr?ael \f’rledézgggk&e;;sﬁg%g;ttge bars was n(gc?alculation (0.9 % for thickness error versus 0.6 % for
12.2.3 The bars were tested in flexural vibration at eighlfrequency error).
laboratories using ten combinations of different frequency
analyzer test systems, impulsers, contact and non-contatf: Keywords
transducers, and supports systems. For the alumina bar, the13.1 advanced ceramics; dynamic; elastic modulus; elastic
mean measured flexural frequency for the ten tests was 658koperties; impulse; Poisson’s ratio; shear modulus; Young’s
Hz, with a standard deviation of 20 Hz. This corresponds to gnodulus
coefficient of variation of 0.3 %. For the silicon nitride bar, the
mean measured flexural frequency for the ten tests was 11 598
Hz, with a standard deviation of 34 Hz. This corresponds to a
coefficient of variation of 0.3 %.
12.2.4 The intralaboratory study did show that individuals
with experience in using the impulse test method for a given

. . TABLE 1 Within- and Between-Laboratory Precision
specimen geometry produced data sets with smaller standaséd

L. . . Test Bar No. and T AlLO; SigN
deviations. For example, with the alumina test bar, the coeffi- oot Par o and ype s Sl
Measured fundamental flexural frequency (Hz) 6581 11.598

95 % repeatability limit (within laboratory) 2.8 CV, %,* 0.8% 1.1%

95 % reproducibility limit (between laboratories) 2.8 CV, %g* 12% 1.4%

8 Grindosonic instrument, available from J. W. Lemmens, 10801 Pear Tree Lane, A Calculated in accordance with Practice E 691, Section 21, and reported in
St. Louis, MO 63074. accordance with Practice E 177, Section 28.
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TABLE 2 Effects of Variable Error on Modulus Calculation

Variable Exponent in  Calculation

Variable Measurement Error

Modulus Equation Error
Frequency (f) 0.1% 2 0.2%
Length (L) 0.1% L3 0.3%
Mass (m) 0.1% m 0.1%
Width (b) 0.1% bt 0.1%
Thickness (t) 0.1% t—3 0.3%
Diameter (D) 0.1% D~ 0.4%

ANNEXES

(Mandatory Information)

Al. DISC-SHAPED SPECIMENS FOR DYNAMIC YOUNG’'S MODULUS, SHEAR MODULUS, AND POISSON’S RATIO FOR
ADVANCED CERAMICS BY IMPULSE EXCITATION OF VIBRATION

Al.1 Scope that is parallel to the flat of the disc) are normal to the plane and
A1.1.1 In testing advanced ceramic disc specimens fopymmetrical around two orthogonal diameters in the plane of
Young’s modulus, shear modulus, and Poisson’s ratio, the dis@€ disc, producing a twisting of the disc. This is an orthogonal
geometry requires a significantly different set of equations an@nti-flexural mode of vibration(7). For the first natural
method of calculation and some minor changes in procedure¥/bration mode, the nodes are located along two orthogonal
This annex describes those variations as they relate to ternfiiameters, offset 45° from the point where the vibration was
nology, test specimens, procedures and calculations for the digeduced. The anti-nodes are located along two orthogonal (90°
geometry specimens. However, the general methods, refepffset) diameters in the disc, with one diameter intersecting the
ences, terminology, significance, interferences, apparatuf0int where the vibration was induced. See Fig. A1.1, which
specimen requirements, and procedures described in the maijows @ finite element map of anti-flexural displacement in a
body of the test method are still pertinent to the test procedur@iSc and a schematic of the nodal and antinodal lines for the

and the results. first natural vibration of the disc).
Al1.2.1.3 nodes n—one or more locations that have a
Al.2 Terminology constant zero displacement in an unconstrained resonant speci-
A1.2.1 Description of Terms Specific to this Annex for men.
Disc-Shaped Specimens: Al1.2.1.4 second natural vibrationn—the vibrations that

Al.2.1.1 anti-nodes n—two or more locations that have occur when the displacements in the cross-sectional plane (the
local maximum displacements in an unconstrained resonamane that is parallel to the flat of the disc) are normal to the
specimen. plane and are uniform in displacement for a given radial

A1.2.1.2 first natural vibration n—the vibrations that occur distance from the center point through the entire 360° arc. This
when the displacements in the cross-sectional plane (the plaime an axisymmetric flexural vibratiorf7). For the second

Anti-flexural Nodal Lines - Locus Of Zero Displacement

Anti-flexural Antinodal Lines - Locus Of Maximum Displacement

FIG. Al.1 Displacement Diagram for Disc-Shaped Specimen in First Natural Vibration

10
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natural vibration mode of a disc, the nodes are located in a
circle concentric with the center of the disc with a fractional
radius of 0.681 of the disc radius. The anti-nodes are located at
the center and around the circumference of the disc specimen.
See Fig. A1.2, which shows a finite element map of axisym-
metric flexural displacement in a disc and a schematic of the
nodal circle and the antinodal points and line for the second
natural vibration of the disc.

FIG. A1.3 Diameter Measurement Locations

Al1.3 Test Specimen

Al1.3.1 Fabricate the specimens so that they are disc-shapéeur measurements. Ensure that the diameter of the disc is
with a diameter to thickness ratio of at least 4, with a value ofuniform to within 0.01 mm or+ 0.1 %, whichever is greater.
10-20 recommended for experimental simplicity. ResonanfThe value of the radius is used to determine the Poisson’s
frequencies for a given specimen are a function of thegatio.)
specimen dimensions as well as its mass and moduli; therefore, A1.3.5 Measure the flatness of the disc resting on an surface
dimensions should be selected with this relationship in mindplate with a dial gauge, taking measurements at nine locations
By using approximate specimen dimensions and estimategne at the center, four at the outer edge, and four at/the
values for the moduli and Poisson’s ratio, nominal resonantadius) on the disc. Turn the disc over and repeat the measure-
frequencies can be calculated with the formulas in A1.5. Byment on the opposite face. The maximum difference between
adjusting the size of the specimen, the resonant frequencies cany two measurements on a face must not exceed 0.1 % of the
be “tuned” into the measurement range of the transducers artiameter.
electronics. The dimensional tolerances for the thickness, Al.3.6 Determine the specimen mass to the nearest 10 mg
diameter, and flatness are given in A1.3.2-A1.3.5. or 0.1 % of the total weight, whichever is greater.

A1.3.2 Measure the specimen thickness within 0.002 mm or A1.3.7 All other specimen requirements and recommenda-
0.1 % (whichever is greater) at five locations (one at the centetions as described in Section 8 of the main body of this
two at the outer edge, and two at tigadius). Determine the standard are pertinent to the disc-shaped specimens.
average of the five measurements for a specimen thickness.

A1.3.3 Ensure that the thickness of the disc is uniform sd®1.4 Procedure

that opposite plane surfaces of the disc are parallel to within A1.4.1 Activate and allow all electrical equipment to stabi-
0.002 mm orx 0.1 % of the thickness, whichever is greater. lize according to manufacturer's recommendations.
For larger discs where precision machining of the thickness to Al1.4.2 Use a test specimen established as an “in-house”
those tolerances is difficult, an alternative tolerance of 0.01 mnverification standard to check the operation of the test system.
or = 0.5 % is allowed, with proper allowances for the resulting The in-house standard can also be used to verify the operation,
loss of precision in the calculated modulus. The use of the lesepeatability and precision of the system and the operator. The
precise tolerance for the thickness should be noted in thetandard specimen should have a geometry similar in size and
report. shape to the experimental specimens.

Al1.3.4 Measure the specimen diameter within 0.01 mm or A1.4.3 First Natural Resonant Frequency:

0.1 % at four locations (45° intervals around the circumfer- A1.4.3.1 Specimens can be supported either on soft poly-
ence, as shown in Fig. A1.3.) Determine an average from tharethane foam strips or on four hard support points. Specimens

Axisymmetric Flexural Nodal Circle -
Locus of Zero Displacement

Antinodal Pdint and Circle Locus of Maximum
Displacement in Axisymmetric Flexure

FIG. Al1.2 Displacement Diagram for Disc-Shaped Specimen in Second Natural Vibration Mode

11
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with a low (< 10) diameter-to-thickness ratio may be supported — the alignment of the support points with the specimen nodal points to fa-
on flat strips of soft polyurethane foam set in an x-pattern. vor the desired vibration mode and to minimize interference
E . h h hat f liant” the location of the strike point at the antinode of the desired vibration
Xperience nas snown that foam supportS are more comp lant mode and an elastic (rapid with short duration contact) method of striking
than hard supports and markedly reduce rattling and extraneous- the positioning of the detection transducer at a point where the desired
: . H H vibration mode is active, but where there is minimal interference from
V|brat|ons_ in the test. If foam supports are _not available, place competitive vibrations
the specimen on four hard support points located at the With imal ¢ of ) g i bl
intersections of the nodal diameters of the first natural vibration '+ & Mnimal amount of experience and pracice on a surtable

. . . . ._ specimen geometry, most operators can obtain repeatability and accuracy
with the nodal circle of the second natural vibration (See Figon the order of 1 % or better in a series of repeated test strikes. For a

Al.4). Generally, visual positioning is sufficiently accurate for specific specimen, the first test strikes are a means of determining the
larger specimens (diameter > 75 mm). Specimens with a highppropriate locations and methods of specimen support, striking, and

(> 20) diameter-to-thickness ratio or a smaller diameter (< 75signal pick-up. By slight shifts in those positions and repeated test strikes,

: . P the proficient operator can find the appropriate locations to achieve the
mm) will require more accurate positioning. consistent 1 % repeatability in a series of five consecutive readings. This
Note AL.1—For precise support location, the nodal circle diameter of'S & iterative process for every new specimen; but can be done quickly by
the test specimen can be calculated as 0.681 of the geometrical meHﬁose operators who have experience with specimens of different sizes and

diameter. Then draw, or otherwise define, the nodal circle of this diamete(%omposnmns.

on a piece of paper so that it is concentric with a circle drawn slightly A1.4.6 After repeatability of the test procedure has been
larger than the diameter of the test piece specimen. Locate four equal§eémonstrated, take and record at least five (5) readings. Use the

disposed positions around the nodal circle to define the support points (séverage of these five readings to determine the first natural
Fig. Al1.4). Place the supports at these positions and then place the tefsequency (f,). If readings repeat with a variation greater than

specimen on the supports so that the specimen is visually concentric with %, the operator shall review the measurement technique
the second larger drawn circle. (supports, tap/sensor location, tapping mode) and the integrity/

A1.4.4 Follow 9.3.2 in the main body for orienting and 98ometry of the test specimen.
using contact and non-contact transducers. Determine theNore A1.3—Adjustments and improved consistency in technique may
direction of maximum sensitivity for the transducer. Orient theimprove the repeatability. Measurement technique can also be checked for

transducer so that it will detect the desired vibration. consistency by taking measurements on “in-house” calibration standards.
. . . . If technique adjustments do not improve the repeatability for the experi-
Al.4.5 For the first natural vibration Fig. A1.5 shows the mental specimens, the operator should determine what the source of the

impulse and sensor points. Locate the transducer on a point (Sériation is. There are two possible causes for this variation:

in Fig. A1.5) on a second mode nodal circle on the flat of the — a geometry in which two vibration modes exist with similar frequen-
disc and offset by 45° from a support point. Strike the specimen _C'ES that 'm?:,fefj-ﬂdU”ng me ;“eflsweme”t- hich orod ,

. . . — Inhomogeneltes/tlaws In the test specimens wnich produce spurious
on the flat of the disc (X1 in Fig. A1.5) 90° away from the vibrations or very rapid damping.

transducer point. Striking at the second mode nodal circle will i L o
In the case of specimens with vibration modes that are similar in

mlnlmlze the possibility of exciting that particular mode of frequency, a frequency spectrum analyzer (which displays multiple
vibration. frequencies) is particularly useful in isolating the desired vibration mode.
With the analyzer showing the competitive vibration frequencies, the
Note Al.2—Accuracy and repeatability in the impulse excitation test harmonic vibration of interest can be enhanced and the undesirable
depend upon developing and detecting a single vibration mode in the tegfpration can be diminished, based on iterative changes in technique
specimen, without introducing and detecting alternative vibration modegsupport/ tap/sensor location, tapping mode).
in the specimen. Exciting and detecting a singular vibration mode for a A1.4.7 Second Natural Resonant Frequency

simple geometry of suitable size depends on three experimental variables: Al.4.7.1 The specimen is supported at the same points used

A = Support Point

Nodal Circle for
2d Natural Mode

Nodal Lines for
~  1st Natural Mode

FIG. Al1.4 Supports Points for 1 St and 2¢ Natural Vibrations in Discs
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2d Natural Nodal Circle

X1}= 1°" MODE IMPULSE POINT @ = 2° MODE IMPULSE POINT

S1] = 1 MODE SENSOR POINT @ = 2° MODE SENSOR POINT

/3\ - SUPPORT POINTS

FIG. A1.5 Impulse and Sensor Points for 1 ' and 29 Natural Vibration in Discs

for the first natural frequency support—the intersection of the Al1.4.7.3 After repeatability of the test procedure has been

first natural frequency nodal diameters with the second naturalemonstrated, the operator takes at least five (5) readings. Use

frequency nodal circle (Fig. Al.4). the average of these five readings to determine the second
A1.4.7.2 Position the transducer on the flat of the disc clos@atural frequencyfy). If the readings vary by more than 1 % of

to the outer circumference. (S2 in Fig. A1.5). Then strike theeach other, the operator shall review the measurement tech-

disc specimen lightly at the center of the specimen (X2 in Fignique. [See Note A1.2 and Note A1.3 following sections A1.4.5

AL.5). and Al1.4.6]
TABLE Al.1 Poisson’s Ratio (p) Values (as a function of f  ,/f ; and t/r) [interpolated from Ref. A3]

folfy 1.350 1.375 1.400 1.425 1.450 1.475 1.500 1.525 1.550 1.575 1.600

t/r Ratio POISSON’S RATIO ()
0.00 0.015 0.043 0.070 0.094 0.118 0.141 0.163 0.184 0.205 0.226 0.247
0.05 0.018 0.044 0.070 0.094 0.118 0.141 0.164 0.185 0.206 0.226 0.247
0.10 0.020 0.045 0.070 0.094 0.118 0.141 0.164 0.185 0.206 0.227 0.247
0.15 0.023 0.049 0.075 0.100 0.124 0.148 0.171 0.192 0.212 0.233 0.254
0.20 0.025 0.053 0.080 0.105 0.130 0.154 0.178 0.198 0.218 0.239 0.260
0.25 0.033 0.060 0.088 0.114 0.139 0.162 0.186 0.206 0.227 0.247 0.268
0.30 0.040 0.068 0.096 0.122 0.148 0.171 0.193 0.214 0.235 0.255 0.275
0.35 0.051 0.078 0.105 0.130 0.155 0.179 0.203 0.224 0.245 0.264 0.284
0.40 0.062 0.088 0.113 0.138 0.162 0.187 0.212 0.234 0.255 0.274 0.292
0.45 0.070 0.096 0.123 0.148 0.173 0.197 0.221 0.242 0.263 0.281 0.300
0.50 0.078 0.105 0.132 0.158 0.183 0.206 0.229 0.250 0.270 0.289 0.307
folfy 1.625 1.650 1.675 1.700 1725  1.750 1.775 1.800 1.825 1.850 1.875 1.900

t/r Ratio POISSON'S RATIO ()
0.00 0.265 0.282 0.297 0.312 0.329 0.346 0.362 0.378 0.394 0.409 0.424 0.438
0.05 0.265 0.283 0.298 0.314 0.331 0.347 0.363 0.378 0.394 0.409 0.424 0.438
0.10 0.265 0.283 0.300 0.316 0.332  0.348 0.363 0.378 0.394 0.409 0.424 0.438
0.15 0.271 0.289 0.306 0.322 0.338 0.354 0.368 0.383 0.398 0.413 0.427 0.442
0.20 0.278 0.295 0.312 0.328 0.344 0.359 0.374 0.388 0.403 0.417 0.431 0.445
0.25 0.286 0.304 0.320 0.336 0.351  0.366 0.380 0.395 0.409 0.423 0.437 0.451
0.30 0.294 0.312 0.328 0.344 0.358 0.372 0.387 0.402 0.415 0.428 0.442 0.456
0.35 0.302 0.320 0.336 0.352 0.367 0.382 0.398 0.414 0.428 0.442 0.456 0.471
0.40 0.310 0.328 0.344 0.360 0.376  0.392 0.409 0.425 0.440 0.455 0.470 0.485
0.45 0.318 0.337 0.354 0.370 0.387 0.403 0.420 0.437 0.452 0.468 0.485 0.503
0.50 0.327 0.346 0.363 0.380 0.397 0.414 0.431 0.448 0.464 0.480 0.500 0.520

13
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TABLE Al.2 K, VALUES (as a function of t/r and p) [From Ref. 9]

vr] 0000 | o0o0s0 | 0100 | 0150 | o200 | o250 | 0300 | 0350 | 0400 | 0450 | o0.500
U K, Value

0.000 6.170 6.144 6.090 6.012 5.914 5.800 5.674 5.540 5.399 5.255 5.110
0.050 6.076 6.026 5.968 5.899 5.816 5717 5.603 5.473 5.331 5.178 5.019
0.100 5.062 5.905 5.847 5.782 5.705 5.613 5.504 5.377 5.234 5.079 4.915
0.150 5.830 5.776 5.720 5.657 5.581 5.490 5.382 5.256 5.115 4.962 4.800
0.200 5.681 5.639 5587 5524 5.446 5.351 5.240 5.114 4.975 4.826 4673
0.250 5517 5.491 5.445 5.380 5.207 5.197 5.083 4.957 4.822 4.681 4537
0.300 5.340 5.331 5.290 5.223 5.135 5.030 4913 4.787 4.656 4523 4.390
0.350 5192 5.156 5.120 5.052 4.961 4.853 4734 4.610 4.483 4.358 4234
0.400 4.973 4.964 4.931 4.865 4.775 4.668 4.551 4.429 4.306 4.186 4.070
0.450 4.781 4.756 4.723 4.661 4576 4.476 4.365 4.249 4131 4.013 3.899
0.500 4540 4525 4.490 4.436 4.365 4.280 2182 4075 3.960 3.841 3.720

TABLE Al1.3 K ; VALUES (as a function of t/r and p) [From Ref 9]

vr| 0100 | 0110 | 0120 | o013 | 0140 | o0a50 | 0160 | 0170 | o01s0 | o019 | 0.200
u K; Value

0.14 5.746 5.739 5.722 5.710 5.696 5.683 5.670 5.654 5.642 5.629 5.608
0.16 5.694 5.687 5.670 5.664 5.645 5.632 5.619 5.602 5.590 5576 5.556
0.18 5641 5634 5617 5.606 5.592 5579 5.566 5549 5537 5523 5502
0.20 5.587 5576 5.563 5.551 5.538 5.524 5510 5.495 5.479 5.463 5.446
0.22 5531 5524 5.507 5.495 5.481 5.468 5.455 5.439 5.427 5411 5.388
0.24 5.474 5.467 5.450 5.438 5.424 5410 5.396 5.379 5.366 5351 5.328
0.26 5.415 5.408 5.391 5.379 5.364 5.350 5.336 5.318 5.304 5.289 5.266
0.28 5.354 5.347 5.330 5317 5.301 5.287 5273 5.255 5.241 5.225 5.201
0.30 5.290 5279 5.266 5.253 5.238 5223 5.207 5.190 5.173 5.154 5.135
0.32 5.224 5.217 5.200 5.187 5172 5.157 5.142 5.123 5.108 5.001 5.067
0.34 5.156 5.148 5131 5.118 5103 5.088 5.073 5.053 5.037 5.020 4.997

TABLE Al.4 K, VALUES (as a function of t/r and p) [From Ref 9]

vr| o000 | o0o0s0 | 0100 | 0150 | 0200 | 0250 | 0300 | 0350 | 0400 | 0450 | 0.500
u K, Value

0.000 8.240 8.226 8.151 8.027 7.863 7.670 7.455 7.227 6.991 6.754 6.520
0.050 8.378 8.339 8.252 8.124 7.963 7777 7.570 7.350 7.120 6.885 6.649
0.100 8.511 8.459 8.364 8.233 8.071 7.885 7.679 7.459 7.228 6.991 6.751
0.150 8.640 8.584 8.485 3.349 3.182 7.990 7.779 7.553 7.316 7.074 6.830
0.200 8.764 8.712 8.611 8.469 8.294 8.092 7.871 7.635 7.390 7.141 6.889
0.250 8.884 8.840 8.738 8.589 8.403 8.189 7.954 7.706 7.450 7.101 6.931
0.300 9.000 8.962 8.860 8.705 3.508 8.280 8.030 7.767 7.497 7.226 6.960
0.350 9.111 9.081 8.977 8.814 8.605 8.363 8.098 7.819 7.535 7.253 6.979
0.400 9.219 9.193 9.085 8.913 8.692 8.436 8.157 7.865 7.569 7.276 6.991
0.450 9.321 9.202 9.178 8.097 3.766 8.499 8.208 7.905 7.508 7.295 7.001
0.500 9.420 9.376 9.252 9.063 8.824 8.550 8.252 7.940 7.625 7.313 7.010

TABLE A1.5 K, VALUES (as a function of t/r and p) [From Ref 9]

vr| 0100 | 0110 | 0120 | o013 | 0140 | 0150 | 0160 | 0170 | o01s0 | 0190 | 0.200
1] K, Value
0.14 8.460 8.443 8.411 8.385 8.355 8.326 8.297 8.262 8.234 8.202 8.160
0.16 8510 8.493 8.460 8.433 8.403 8.373 8.343 8.308 8.279 8.248 8.205
0.18 8.560 8.542 8.509 8.482 8.451 8.421 8.391 8.356 8.327 8.294 8.249
0.20 8.611 8.586 8.559 8.530 8.500 8.469 8.437 8.403 8.368 8.331 8.294
0.22 8.662 8.646 8.613 8.582 8.548 8517 8.487 8.454 8.425 8.390 8.338
0.24 8712 8.694 8.660 8.630 8.507 8.565 8.534 8.498 8.467 8.432 8.382
0.26 8.762 8.743 8.708 8.678 8.645 8.612 8.580 8.542 8.510 8.474 8.425
0.28 8.811 8.791 8.755 8.726 8.692 8.659 8.625 8.585 8.551 8515 8.467
030 8.860 8.833 8.804 8.772 8.739 8.705 8.668 8.630 8.501 8.550 8.508
0.32 8.907 8.885 8.848 8.818 8.784 8.750 8.716 8.675 8.640 8.601 8.548
0.34 8.954 8.932 8.804 8.863 8.827 8.793 8.758 8.717 8.681 8.641 8.586
Al1.5 Calculations rial properties, and the specimen dimensions is giveg@)m@s:
A1.5.1 The derivation and use of the equations for calcu- K, /A
lating the Poisson’s ratio and moduli from disc-shaped speci- h =5 2\5 (ALI)

mens are described in detail in two referen¢8sand 9). ) . )

Reference(8) gives the derivation and procedures for the Where f is the resonant frequency of interes, is the
baseline calculation. The fundamental equation defining thgeometric factor for that resonant frequencys the radius of
relationship between the natural resonant frequency, the matthe disc,A is the plate constant (A = Bff12 (1 |f)]), tis the
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disc thickness,p is the density of the discE is Young’'s E, = [37.6991f2 D> m(1—®)]/ (K2 1) (A1.2)
modulus of elasticity, and p is the Poisson’s ratio for the disc
material. This is a general equation which is valid for both the
first natural and second natural vibrations. f8fsupplements
the (8) with more extensive tables for the geometric factors K
and for determining Poisson’s ratio. The overall method for
calculating the Poisson’s ratio, Young’s modulus, and the shea{ypgre-
modulus from the first natural and second natural frequencieg
is described in(8) and (9) and as the following three-step E,
procedure. E,
(1) Determine the Poisson’s ratio from the experimental f;
values for the first and second natural resonant frequencies. f,
(2) Calculate two independent values f& (Young's D
modulus of elasticity) using the Poisson’s ratio from step 1 andMm
the first natural and second natural resonant frequencieg!

E, = [37.6991f 5 D m(1—13)]/ (K2t} (A1.3)

E=(E, +Ey)/2 (A1.4)

Young’s Modulus (Pa)

First Natural Calculation of Young’s Modulus
Second Natural Calculation of Young’s Modulus
First Natural Resonant Frequency (Hz) of the disc
Second Natural Resonant Frequency (Hz) of the disc
Diameter (mm) of the disc

Mass (g) of the disc

Poisson’s ratio for the specimen as determined in

DetermineE as the average of the two independent calcula- Al.5.2 _
tions. K, = First Nat_ural Geometrlc FacFor from Tables A1.2 and
(3) Calculate the value o6 (Shear Modulus) using the _ AL3 (using linear interpolation as necessary)
Poisson’s ratio from Step 1 and the calculated valug sbm K, = Second Natural Geometric Factor from Tables Al.4
step 2. ar}d A1.5 (using linear |r_1terpolat|on as necessary)
The details for each calculation are given in the following L~ = thickness (mm) of the disc
sections r = radius (mm) of the disc

Al1.5.2 Poisson’s RatioRefs. (8 and 9)—For the disc- _ ) _
shaped specimen Poisson’s ration (1) can be determinedNOTE Al1.4—The two tables in sets A-Il and A-lll give two different
directly from the experimental values of the first naturalrangesforthe independent variables t/r and p. The first table gives the full

f d th d | f range (t/r = 0.0 to 0.50 ahp = 0 t00.50), while the second table in each
resonant frequencyfy) and the second natural resonant fre- set gives a smaller range with smaller increments (t/r = 0.1 to 0.2 and p =

quency ). This is done by the use of Table A1.1 in which the 14 1 0.34). The determination of a value fqrffom the tables is done
value fpr Poisson’s ratio () is interpolated from the table USiﬂgn a similar manner to the method used for Poisson’s ratio in Table A1.1.
the ratio of the second natural resonant frequency to the first Nore A1.5—The constant 37.6991 in the equation is fr@jand is the
natural resonant frequency,/;) correlated with the ratio of numerical value of 12.
the specimen thickness to the specimen radius (t/r). For _
example, if the ratio €,/f,) of the two experimental resonant ~A1-5.4 Dynamic Shear Modulug9)
frequencies is 1.55 and the thickness of the disc is 3 mm and A1.5.4.1 The shear modulus is determined from the calcu-
the diameter is 30 mm (giving a t/r ratio of 0.20), then thelated Young’s modulus value and the Poisson ratio.
;cgi;son’s ratio is 0.218 from the 9th column and 5th row of the G = E/[2(1+ W] (AL5)
A1.5.3 Dynamic Young's Modulugs, 9) where:
A1.5.3.1 For the Young’s modulus of a disc, two calcula- G = Shear Modulus (Pa) _ .
tions of E (§ and E) are made independently from the two E = Young's Modulus (Pa) calculated in section A.5.3
resonant frequency measurements, and then a final value E #§ = Poisson’s ratio determined in section A.5.2
determined by averaging the two calculated valugarit E.

A2. CORRECTION FOR EDGE CHAMFERS OR RADII IN RECTANGULAR BEAMS IN THE CALCULATION OF YOUNG’S
MODULUS

A2.1 Introduction A2.1.2 This annex provides a simple means to modify Eq 2
dg correct the calculated Young’'s modulus for the two types of
with a simole prismatic cross section for calculatin theedge treatments. This analysis and corroborative experimental
dvnamic Yolim ps modulus using Ea 2. In actual ra?ctice data are from reference (10). The corrections to E are signifi-
rgctan ular s gcimens with ed g cr?am.fers or radiipas illué(—:ant (0.59% or greater) for narrow specimens which are typical
trated ign Fias FIAZ 1 and A2 2 arg frequently used for 'mechani9f flexure strength test configurations, (for example C 1161).
171gS. A< o Teq y T'he corrections are less significant for wide specimens (w/t >5)
cal testing. (The edge treatment is used with flexure strengtguch as those recommended in 8.2. These adjustments are only

zpeC|men§rhto regulce or elt[m|naILEte Zthe tﬁen?'t'v('jty dt?j edg% plicable for flexural modes of resonance and are not appro-
amage). The modulus equation (Eq 2) in the standard does n iate for the longitudinal resonance mode or for torsional
account for the effect of such edge treatments on the mome L sonance

of inertia and the density, and subsequent effects on the
dynamic Young’s modulus. A2.2 Measurement Procedure

A2.1.1 This modulus standard uses a rectangular specim
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r mens. The moment of inertiy,, for a rectangular cross section
s )/ yy beam of thickness, t, and width, b, (with no chamfer) is:

bt
=15

A2.3.3 The true moment of inertid, for a beam with four
t 45° chamfers of size ¢ along the long edges is (Refs. 11, 12):
! )
II_E_g(C +2(3’[—ZC)) (A23)
\_ Y, where the second term on the right hand side shows the
. A reduction due to the chamfers. It is assumed that the four
> b >| chamfers are identical in size.
A2.3.4 The true moment of inertid, for a beam with four
FIG. A2.1 Specimen Cross Section for a Rounded-Edge Beam identical rounded edges of radius r is (Ref. 12)

bt—2r° (-2 (b—2r)(t—r)r

o 4

ﬂ—-r- (o] I, = 17 + 6 + > + 4r <E*%>
2 t 4 2
\ A + <§—r<1——>>

= (A2.4)

The true Young’s modulus, E,, may be determined from Eq
A2.1
t A2.3.5 For standard 3 mmxX 4 mm rectangular cross
section flexure strength specimens (C 1161 size B) Eq A2.1
may be expressed:

(A2.2)

45°

Ecor = FEy (A2.5)

\ / 4 Correction factors F for a standard 3 m4 mm specimen
with four chamfered edges are given in Table A2.1. Analogous
D‘ values of F for standard 3 mm 4 mm specimens with four
rounded edges, r, are given in Table A2.2

- b

FIG. A2.2 Specimen Cross Section for a Chamfered-Edge Beam

A2.4 Density Correction

A2.2.1 Measure the chamfer sizepr the rounded edges, TABLE A2.1 Correction factors, F and P, for chamfered standard

of the rectangular specimen by any convenient method to the  3Mm  4mm strength test specimens for ASTM C 1161. A
chamfer size of 0.150 mm is the maximum value allowed for this

same acguracy used for the overIaII dimensions. A traversmg geometry by ASTM C 1161 and ISO 14704.
Stage undera mlcroscope atrave ing mlcroscope oran Optl Chamfer Moment Correction factor, | Density Correction factor,
comparator may be suitable. Use the averager r, for the Dimension, ¢ E p
correction. The correction factors and equations below may be (mm) b=4mm,t=3mm b=4mm,t=3mm
less accurate if the chamfers or rounded edges are uneven jor—2:053 Lons o
dissimilar in size. The correction factors only applicable if all 0.100 1.0048 1.0017
four long edges are treated. 0.110 1.0058 1.0020
0.115 1.0063 1.0022
; ; 0.118 1.0066 1.0023
A2.3 Moment of Inertia Correction 0120 100869 T 0024
A2.3.1 The true Young’s modulus,.E, for symmetrically 8-5‘21 i-gg;g i-gggg
chamfered specimens may be calculated as follows: 0126 10076 10027
Iy 0.128 1.0078 1.0027
Ecor <| ) E, (A2.1) 0.130 1.0080 1.0028
0.132 1.0083 1.0029
where E and |, are the calculated Young’s modulus and g-gg i-gggg i-gggg
moment of inertia assuming the beam is a 5|mple_ rv_actangul' f 0.138 10090 10032
beam, uncorrected for chamfers or rounds, respectiyéytte 0.140 1.0093 1.0033
true moment of inertia of a beam with four symmetric chamfers 8-128 i-gigg i-ggig
or edge radii applied to the long edges of the beam. 0.170 10136 10028
A2.3.2 Chamfers reduce the moment of inertla,and 0.180 1.0152 1.0054
slightly alter the radius of gyration. The effect upbiprevi- 8-;38 i-gigg i-ggg%
ously has been quantified in connection with work to minimiz 0.210 10205 10074
experimental error in flexure strength testing (Refs. 11, 12, 13]J. 0.220 1.0224 1.0081
Even a small chamfer can altéra meaningful amount. For 0.230 1.0244 1.0089
example, a 45° chamfer of 0.15 mm size will reduce | by 1 9 0240 10205 10097
ple, - y 0.250 1.0287 1.0105

for common 3 mmX 4 mm ceramic flexure strength speci-
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TABLE A2.2 Correction factors, F and P, for edge rounded A2.4.2 However, edge treatments alter the relationship be-
standard 3mm X 4mm strength test specimens for ASTM C 1161. tween the density, mass and physical dimensions of the test
A rounded edge of 0.200 mm is the maximum value allowed for . If d ' db . dtod . he d .

this geometry by ASTM C 1161 and ISO 14704, piece. If an edge treated beam is use to_ etermine the dynamic

. , . , Young’s modulus, then Eq A2.6 is invalid and an additional
Radius Moment Correction factor, | Density Correction factor, X

Dimension, r F p correction should be made to E as follows.

(mm) b=4mm,t=3mm b=4mm,t=3mm ; o
0.080 10913 10505 The correct densityp,;, of a chamfered beam is:
0.090 1.0017 1.0006 _ o
0.100 1.0021 1.0007 p= ML (bt — 2] (A2.7)
0.110 1.0025 1.0009 : .
0120 10050 L0010 The correct densityp,, for an edge-rounded beam is:
0.130 1.0035 1.0012 _ 204
0.140 1.0041 1.0014 pr = ML (bt = r"(4 = m)] (A2.8)
0.150 1.0046 1.0016 .
0.160 1.0053 1.0018 and then:
0.170 1.0059 1.0021 Pt
0.180 1.0066 1.0023 Ecor = <—>Eb = PE, (A2.9)
0.190 1.0074 1.0026 Po
8'528 1'8833 1'8852 where P is the correction factor for the change in the
0.220 1.0098 1.0035 relationship due to the edge treatment. Values of P for standard
8-;28 1-81% 1-882? 3 mm X 4 mm specimens with either four chamfered or
0250 10196 10045 rounded edges are listed in Tables A2.1 and A2.2.
0.260 1.0136 1.0049
0.270 1.0146 1.0052 A2.5 Combined Correction
0.280 1.0157 1.0056
0.290 1.0168 1.0061 A2.5.1 To correct E for both the change in moment of
0.300 1.0180 1.0065

inertia and density due to edge treatments on a standard 3mm
X 4 mm cross section specimens:

A2.4.1 An additional correction, but of lesser magnitude, I/ Py
may also be incorporated. Eq 2 in this standard contains an Beor = (K)(‘)Eb_ FPE,
assumption (References 1 and 3) that the density is related to

the mass and physical dimensions of the rectangular bea‘[pNOTE A2.1—This standard calculates E using Eq 2 which requires the
following Eq A2.6: eam mass and physical dimensions. Other standards and equipment may

use alternative equations that use the material’s density (measured by

(A2.10)

. m A26 Archimedes water displacement or a similar technique) to calculate E. In
Po = piL (A2.6) such cases, only the moment of inertia correction, Eq A2.5, is necessary.
REFERENCES

(1) Spinner, S., and Tefft, W. E.,“ A Method for Determining Mechanical (7) Colwell, R.C. and Hardy, H.C., “The Frequencies and Nodal Systems
Resonance Frequencies and for Calculating Elastic Moduli from These of Circular Plates,”Phil. Mag. S, 7, Vol 24, N. 165, 1937, pp.
Frequencies,ProceedingsASTM, 1961, pp. 1221-1238. 1041-1055.

(2) Spinner, S., Reichard, T. W., and Tefft, W. E., "A Comparison of (8) Martincek, G.,“ The Determination of Poisson’s Ratio and the Dy-
Experimental and Theoretical Relations Between Young’s Modulus  namic Modulus of Elasticity from the Frequencies of Natural Vibration

and the Flexural and Longitudinal Resonance Frequencies of Uniform i Thick Circular Plates,Journal of Sound Vibratiorvol 2, # 2, 1965,
Bars,” Journal of Research of the National Bureau of Standards—A.  pp. 116-127.

Physics and Chemistrijol 64A, No. 2, March-April, 1960. (9) Glandus, J.C., “Rupture Fragile et Résistance aux Choes Thermiques

(3) Spinner, S., and Tefft, W. E., “A Method for Determining Mechanical ~ * 4e céramiques a Usages Mecaniques”, Thesis, University of Limoges,
Resonance Frequencies and for Calculating Elastic Moduli from These  France. 1981.

Frequencies,ProceedingsASTM, 1961, pp. 1221-1238. . B .

(4) Pickett, G., “Equations for Computing Elastic Constants from Flexural(lo) Sﬁlgug}?s;r? éo?rvgg?énsEl?oSrtl(l:Ec,;/glg(;dl':'lr%Zt%/eE‘;S? rj]arz:r?];f Ei?;ag-
and Torsional Resonant Frequencies of Vibration of Prisms and o = oo ?) 317-320 (2000) Y ' '
Cylinders,” ProceedingsASTM, Vol 45, 1945, pp. 846—865. v . i ' ) ) i

(5) Shear modulus correction taken from Spinner, S., and Valore, R. C_(,ll) F. Baratta, “Requirements for Flexure_ Testing of Brltt[e Materials,
“Comparisons Between the Shear Modulus and Torsional Resonance Y-S: Army TR 82-20, U.S. Army Materials and Mechanics Research
Frequencies for Bars and Rectangular Cross Sectialwjtnal of Center, Watertown, MA, 02172, April 1982.
ResearchNIST, JNBAA, Vol 60, 1958, RP2861, p. 459. (12) F. Baratta, G. Quinn, and W. Matthews, “Errors Associated with

(6) Smith, John S., Wyrick, Michael D., and Poole, Jon M., “An Flexure Testing of Brittle Materials,” U.S. Army MTL TR 87-35,
Evaluation of Three Techniques for Determining the Young’s Modulus ~ U.S. Army Materials Technology Laboratory, Watertown, MA 02172,

of Mechanically Alloyed Materials, Dynamic Elastic Modulus Mea- July 1987
surement in Materials, ASTM STP 1048an Wolfenden, Ed., ASTM,  (13) W. H. Duckworth, “Precise Tensile Properties of Ceramic Bodies,” J.
Philadelphia, PA, 1990. Amer. Ceram. Soc., 34 [1] 1-9 (1951).

17



fib c 1259

The American Society for Testing and Materials takes no position respecting the validity of any patent rights asserted in connection
with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such
patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM Headquarters. Your comments will receive careful consideration at a meeting of the responsible
technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your
views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at
610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

18



